力士樂電磁閥的流量特性介紹
力士樂電磁閥的流量特性是在閥前后壓差固定的情況下得到的流量特性,它決定于閥芯的形狀,因此也稱之為結構特性。在情況下,流量僅隨閥門開度變化而變化,從控制的角度看,觀察調節閥的控制指標,研究流量特性,是一種常用的方法。在常用的調節閥中,有四種典型的流量特性。
1 直線特性
力士樂電磁閥的相對流量與相對開度成直線關系。曲線斜率不變,即它的放大系數不變。以相對行程等于10%、50%、80%三點為例,當行程變化10%時,所引起相對流量變化10%,而它的相對變化值(即靈敏度)分別為100%、20%、12.5%。
可以推知,在變化相程情況下,閥門相對開度較小時,相對流量變化值大,靈敏度高;相對開度較大時,相對流量變化值小,靈敏度低。這往往使直線特性閥門控制性能變壞:在小開度時,放大系數相對來說很大,調節過程往往產生振蕩;在大開度時,放大系數相對來說不大,靈敏度低,容易使閥門動作遲緩,調節時間延長。
2 對數特性
其單位相對行程的變化引起的相對流量的變化與此點相對流量成正例。以同樣的行程L等于10%、50%、80%三點為例,當行程變化10%時,流量變化值分別為1.9%、7.4%、20.5%,可以說其放大系數隨閥門的開大而增大。因此,這種閥門在小開度時,放大系數小,工作得緩和平穩;在大開度時,放大系數大,工作得靈敏。同樣,各點靈敏度為40%處處相等(也可稱等百分比特性),便于控制。
3 快開特性和拋物線特性
在力士樂電磁閥閥門開度小時,流量變化較大,隨著開度增大,流量很快達到大值,放大系數大,靈敏度高。在閥門開度大時,流量變化不大,放大系數較小,靈敏度也較低。在壓力不太大、調節要求不高的場合應用,開則快,關則慢,不易引起管網大的壓力波動。這種閥的單位相對行程的變化所引起的相對流量與此點的相對流量值的平方根成正比關系。它介于曲線(1)(2)之間,其特性接近對數閥特性,但由于其閥芯加工復雜,較少采用。
是自動控制中直接與流體相接觸的執行器。對熱工對象來說,其控制流體(往往是水)的流量和壓力,關系著過程、空氣調節等自動化的技術目標的實現。正確選取調節閥的結構形式、流量特性和產品規格,對于自控系統的穩定性、經濟合理性有十分重要的作用。
常用的力士樂電磁閥有座式和蝶閥兩類。隨著技術的發展,調節閥的結構型式越來越多,調節閥結構型式的選擇主要是根據工藝參數(溫度、壓力、流量)、介質性質(粘度、腐蝕性、毒性、雜質狀況)以及調節系統的要求(可調節比、噪音、泄漏量)綜合考慮來確定。一般情況下,應普通單、雙座閥和套筒閥。因為此類調節閥結構簡單,閥芯形狀易于加工,比較經濟;或根據具體的特殊要求選擇相應結構形式的調節閥。結構型式確定以后,調節閥的具體規格關系到閥的流量特性是否與系統特性相匹配,關系到系統是否穩定性高、經濟性好。調節閥的流量特性,是指流體流過調節閥的相對流量與調節閥的相對開度之間的關系。易推知,相對流量與相對開度成正相關,即閥門通道越小,相對開度越小,相對流量越小;閥門通道越大,相對開度越大,相對流量越大。閥門通道為零時,這時流量為零,即閥門關閉。由流體力學可知,通過閥門的流量與閥門前后的壓差成正相關的關系,即:
式中:Q指通過閥門的流量;ΔP是指閥門前后形成的壓差;K是指系數。
壓差往往是由閥門開度(閥芯的位移L)所形成的流體通道決定,開度越小,相對開度越小,閥門前后壓差越大;開度越大,相對開度越大,閥門前后的壓差越小。可以說,通過調節閥的流量大小不僅與閥的開度有關,而且和閥前后的壓差有關。工作中的調節閥,當閥的開度改變時,不僅流量發生了變化,閥前后壓差也發生了變化。為了便于討論,先假定閥前后壓差一定,即先討論流量特性,然后再考慮調節閥在管路中的實際情況,即討論工作流量特性。
上一篇 : NORGREN壓力開關系統功能模式調節方法
下一篇 : 判斷德國SEW減速機的增長需分析哪些因素?